





LIFE19 CCM/IT/001334

# Low-grade waste heat recovery in steel-making industry by coupling Large Heat Pump and Gas Expander

Exploring Waste Heat Recovery Technology Across Diverse Sectors

Gina Ambrosio, CSMT Innovative Contamination Hub HEATLEAP Final Dissemination Event - Brussels, 6<sup>th</sup> July 2023



## Outline







#### CSMT's contribution to HEATLEAP project in Action C3 - Replicability and transfer

Enhancing Replicability and Market Deployment through the technical replicability report and the replication site identification tool.

### Topic covered:

- Overview of Waste Heat Recovery in Industrial Processes
- Mapping Industrial Sites with High Recovery Potential in EU27 countries plus the UK
- Temperature Ranges of Industrial Waste Heat Sources
- Exploring Heat Sources for District Heating Systems
- Standardized Data Collection for Waste Heat Recovery
- Conclusions







### **Temperature Distribution in Industrial Waste Heat**



### Grade Waste Heat: Abundant and Promising Opportunity

- Grade Waste Heat is the most abundant source of waste heat across various industries
- Industrial actors have a promising opportunity to harness its potential
- Temperature range between 30°C and 250°C offers significant availability in certain industrial processes







## Mapping Industrial Sites with High Recovery Potential



M. Astolfi et al., 'The Path to Tapping into a Large CO2-free European Power Source', 2022

Significant potential for thermal energy harvesting

- Policymakers should take regional characteristics into account, such as the concentration of pulp and paper industry in Scandinavian countries and the prevalence of waste-to-energy plants in Western Europe, when developing targeted strategies for harnessing waste heat.
- The non-metallic minerals industry is a prominent sector found across all EU countries

Only 25% of the total energy input in these industries is utilized as thermal energy, resulting in a staggering 75% of thermal energy derived from primary fuels being wasted.

LIFE HEATLEAP - Project Meeting







### **Temperature Ranges of Industrial Waste Heat Sources**

#### The potential of LHP technology in EU Countries is huge due to the different types of heat sources identified in an industrial process.

Heat pumps need to be tailored to specific applications:

- Processes below 100°C, can be implemented in the paper, food, and chemicals industries;
- For temperatures between 150°C and 200°C, HPs need special refrigerants and compressors;
- At temperatures above 200°C, direct electrification of industrial processes is generally preferable over HPs.

J. Ling-Chin at al., in Energy Conversion - Current Technologies and Future Trends, IntechOpen, 2019. DOI: 10.5772/intechopen.78701

| Unit process               | Low-grade heat source                                                      | Temperature (°C) |
|----------------------------|----------------------------------------------------------------------------|------------------|
| Boilers                    | Flue gases                                                                 | 110-260          |
| Air compressors            | Waste heat from the compressor system                                      | 30-60            |
| Heating/Cooling<br>network | Condensate from steam heating and spent cooling water from cooling systems | 60-90            |
| Industrial sector          |                                                                            |                  |
| Petrochemical              | Stack gas from crude distillation                                          | 156              |
|                            | Stack gas from vacuum distillation                                         | 216              |
|                            | Exhaust from ethylene furnace                                              | 149              |
| Iron/Steel Making          | Waste gas from coke oven                                                   | 200              |
|                            | Blast furnace gas                                                          | 93               |
|                            | Blast stove exhaust                                                        | 250              |
| Aluminum                   | Exhaust from aluminum casting with a stack melter                          | 121              |
| Food and Drink             | Extracted air from cooking with fryers or ovens                            | 150-200          |
|                            | Exhaust from drying with spray/rotary dryers                               | 110-160          |
|                            | Water vapor from evaporation and distillation                              | 100              |
| Textile                    | Dyed wastewater from drying                                                | 90-94            |
|                            | Exhaust for fabric drying and finishing                                    | 180              |
|                            | Wastewater rejected by a heat exchanger                                    | 58-66            |
| Paper                      | Wastewater from slag flushing in a furnace                                 | 65-85            |
|                            | Waste steam from slag flushing in a furnace                                | 95-100           |
|                            | Cooling water from furnace wall cooling                                    | 35-45            |
| Cement                     | Exhaust from cement kilns using 5 or 6-stage preheaters                    | 204-300          |
|                            | Hot air discharged from clinker coolers                                    | 100              |







## **Exploring Application in Diverse Sectors**

### • Sewage water

The EU Directive 2018/2001 recognized wastewater as a renewable heat source. Wastewater from domestic, industrial, and commercial developments maintains considerable amounts of thermal energy after discharging into the sewer system.

### • Data center

Digitalization influenced the rapid growth of data centers which facilitate the storage and access of data when required. Data centers are run by electricity and the functioning of different equipment release heat. So, all the electricity input is converted to heat.







## Exploring Heat Sources for District Heating Systems

#### Assessing the Viability of Various Heat Sources

- Sewage water emerges offers high temperature, long-term stability, and proximity to urban areas;
- Industrial waste heat shares similar advantages, except for long-term stability;
- Even low-temperature heat sources like ambient water and district cooling return can be successfully utilized;
- Newer options like flue gas and solar heat storage have emerged after 2000, potentially playing a significant role in future district heating systems.

#### A. David et al., Energies 10, 4, 578, 2017; doi: 10.3390/en10040578

| Type of Heat Souce    | Temperature | Stability/Security | Proximity to urban area |
|-----------------------|-------------|--------------------|-------------------------|
| Sewage water          | 0           | 0                  | 0                       |
| Ambient water         | $\diamond$  | 0                  | 0                       |
| Industrial waste heat | 0           |                    | $\diamond$              |
| Geothermal water      | 0           | 0                  |                         |
| Flue gas              | 0           | $\diamond$         | $\diamond$              |
| District cooling      |             | $\diamond$         | 0                       |
| Solar heat storage    | 0           | 0                  | $\diamond$              |

Characteristics of heat sources used by HP: o high ◊ medium □ low







### The potential of GEX technology in EU Countries

GEX technology can be implemented in basic metals, mining and quarrying, paper and printing, and chemical sectors. Those sectors can be relevant for the GEX installation due to the overall input from electricity and gas.



#### (percentage of total output in 2018)







### **Standardized Data Collection for Waste Heat Recovery**

Data collection for evaluation of heat recovery potential from industrial processes

Technical data: Note: starred data are mandatory for a preliminary evaluation

#### Cold source:

| Heat Source (*):         | e.g. Water, Air, |       | Mandatory data |
|--------------------------|------------------|-------|----------------|
| Physical status:         | Liquid/Vapour    |       | ]              |
| Inlet Temperature (*):   |                  | °C    | Mandatory data |
| Outlet Temperature (*):  |                  | °C    | If required    |
| Flow rate (*):           |                  | mc/hr | Mandatan       |
| now rate ( ).            |                  | kg/s  | Maridator      |
| Thermal power available: |                  | kWt   | ]              |
|                          |                  |       |                |

#### Hot source:

| Heat Source (*):        | e.g. Water, Air, |       | Mandatory data |
|-------------------------|------------------|-------|----------------|
| Physical status:        | Liquid/Vapour    |       | ]              |
| Inlet Temperature (*):  |                  | °C    | Mandatory data |
| Outlet Temperature (*): |                  | °C    | If required    |
| Flow rate (*):          |                  | mc/hr | Mandaton       |
| now rate ( ).           |                  | kg/s  | mandator       |
| Thermal power required: |                  | kWt   | lf any         |

| Econom  | ical  | data |
|---------|-------|------|
| LCOHOIN | licai | uata |

| Daily operating hours    | hours/day  |
|--------------------------|------------|
| Yearly operating hours   | hours/year |
| Electricity average cost | €/MWh      |
| Heat average cost        | €/MWht     |
|                          |            |

Tool for waste heat recovery ensures standardized identification of suitable plants for HEATLEAP technology.

The tool, captured data assess replication potential in other Energy-Intensive Industries, does not take into account the financial part but it is a support to find possible stakeholders.

#### Networking activity:

**Horizon INCUBIS** - Platform that integrates matchmaking functionalities, ranking tools, feasibility tools, best practices, guidelines, training materials and funding opportunities, functioning as a toolbox for the delivery of Incubator services for factories that manage heat residues (link tool).







## Conclutions

- Various heat sources offer immense potential for LHP installations, but each source requires specialized planning, design, and implementation.
- Sewage water and ambient water are reliable heat sources for LHPs, providing long-term stability and proximity to urban areas. Industrial waste heat shares similar advantages, except for long-term stability;
- Industries in sectors such as metal products, food, textiles, and electrical equipment are potential candidates for gas expander technology.
- However, heat pumps face <u>higher investment costs compared to subsidized technologies</u>, limiting their wider <u>adoption</u>. Policy support and innovation will be needed to reduce upfront purchase and installation costs.
- A tool compliant with Energy Efficiency Directives has been developed to collect specific data and promote the adoption of these technologies in the market.
- The technical report and the tool set the basis to foster a wide replication of the WHR solutions and to design innovative Business Models.







# Thank you for your attention!

#### Contact info:

Alberto Bonetti



e-mail: a.bonetti@csmt.it

Gina Ambrosio



e-mail: g.ambrosio@csmt.it

CSMT info



